Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2019): 20240040, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531398

RESUMO

Interactions between environmental stressors may contribute to ongoing pollinator declines, but have not been extensively studied. Here, we examined the interaction between the agricultural fungicide Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) and high temperatures on critical honeybee behaviours. We have previously shown that consumption of field-realistic levels of this fungicide shortens worker lifespan in the field and impairs associative learning performance in a laboratory-based assay. We hypothesized that Pristine would also impair homing and foraging behaviours in the field, and that an interaction with hot weather would exacerbate this effect. Both field-relevant Pristine exposure and higher air temperatures reduced the probability of successful return on their own. Together, the two factors synergistically reduced the probability of return and increased the time required for bees to return to the hive. Pristine did not affect the masses of pollen or volumes of nectar or water brought back to the hive by foragers, and it did not affect the ratio of forager types in a colony. However, Pristine-fed bees brought more concentrated nectar back to the hive. As both agrochemical usage and heat waves increase, additive and synergistic negative effects may pose major threats to pollinators and sustainable agriculture.


Assuntos
Fungicidas Industriais , Abelhas , Animais , Néctar de Plantas , Comportamento de Retorno ao Território Vital , Temperatura , Condicionamento Clássico
2.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38487901

RESUMO

While multiple studies have shown that honey bees and some other flying insects lower their flight metabolic rates when flying at high air temperatures, critics have suggested such patterns result from poor experimental methods as, theoretically, air temperature should not appreciably affect aerodynamic force requirements. Here, we show that apparently contradictory studies can be reconciled by considering the thermal performance curve of flight muscle. We show that prior studies that found no effects of air temperature on flight metabolism of honey bees achieved flight muscle temperatures that were near or on equal, opposite sides of the thermal performance curve. Honey bees vary their wing kinematics and metabolic heat production to thermoregulate, and how air temperature affects the flight metabolic rate of honey bees is predictable using a non-linear thermal performance perspective of honey bee flight muscle.


Assuntos
Voo Animal , Insetos , Abelhas , Animais , Temperatura , Voo Animal/fisiologia , Metabolismo Energético/fisiologia , Músculos/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(4): e2311025121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227669

RESUMO

Heat waves are becoming increasingly common due to climate change, making it crucial to identify and understand the capacities for insect pollinators, such as honey bees, to avoid overheating. We examined the effects of hot, dry air temperatures on the physiological and behavioral mechanisms that honey bees use to fly when carrying nectar loads, to assess how foraging is limited by overheating or desiccation. We found that flight muscle temperatures increased linearly with load mass at air temperatures of 20 or 30 °C, but, remarkably, there was no change with increasing nectar loads at an air temperature of 40 °C. Flying, nectar-loaded bees were able to avoid overheating at 40 °C by reducing their flight metabolic rates and increasing evaporative cooling. At high body temperatures, bees apparently increase flight efficiency by lowering their wingbeat frequency and increasing stroke amplitude to compensate, reducing the need for evaporative cooling. However, even with reductions in metabolic heat production, desiccation likely limits foraging at temperatures well below bees' critical thermal maxima in hot, dry conditions.


Assuntos
Néctar de Plantas , Termotolerância , Abelhas , Animais , Água , Temperatura Corporal , Termogênese
4.
Bioscience ; 73(11): 808-813, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38125825

RESUMO

Over decades, pesticide regulations have cycled between approval and implementation, followed by the discovery of negative effects on nontarget organisms that result in new regulations, pesticides, and harmful effects. This relentless pattern undermines the capacity to protect the environment from pesticide hazards and frustrates end users that need pest management tools. Wild pollinating insects are in decline, and managed pollinators such as honey bees are experiencing excessive losses, which threatens sustainable food security and ecosystem function. An increasing number of studies demonstrate the negative effects of field-realistic exposure to pesticides on pollinator health and fitness, which contribute to pollinator declines. Current pesticide approval processes, although they are superior to past practices, clearly continue to fail to protect pollinator health. In the present article, we provide a conceptual framework to reform cyclical pesticide approval processes and better protect pollinators.

5.
Sci Rep ; 13(1): 19458, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945797

RESUMO

Managed honey bees have experienced high rates of colony loss recently, with pesticide exposure as a major cause. While pesticides can be lethal at high doses, lower doses can produce sublethal effects, which may substantially weaken colonies. Impaired learning performance is a behavioral sublethal effect, and is often present in bees exposed to insecticides. However, the effects of other pesticides (such as fungicides) on honey bee learning are understudied, as are the effects of pesticide formulations versus active ingredients. Here, we investigated the effects of acute exposure to the fungicide formulation Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) on honey bee olfactory learning performance in the proboscis extension reflex (PER) assay. We also exposed a subset of bees to only the active ingredients to test which formulation component(s) were driving the learning effects. We found that the formulation produced negative effects on memory, but this effect was not present in bees fed only boscalid and pyraclostrobin. This suggests that the trade secret "other ingredients" in the formulation mediated the learning effects, either through exerting their own toxic effects or by increasing the toxicities of the active ingredients. These results show that pesticide co-formulants should not be assumed inert and should instead be included when assessing pesticide risks.


Assuntos
Fungicidas Industriais , Inseticidas , Praguicidas , Abelhas , Animais , Fungicidas Industriais/toxicidade , Praguicidas/toxicidade , Inseticidas/toxicidade
6.
J Insect Physiol ; 149: 104554, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586476

RESUMO

The Proboscis Extension Reflex (PER) paradigm trains honey bees to associate an odor with a sugar reward and is commonly used to assess impacts on associative learning after exposure to pesticides. While the effects of some types of pesticides have been well-investigated, relatively little attention has been focused on fungicides that are applied to flowering crops. We have previously shown that consumption of field-relevant concentrations of the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) impairs honey bee performance in an associative learning assay, but the mechanism of its action has not been investigated. We hypothesized that Pristine® interferes with carbohydrate absorption and/or regulation, thereby disrupting the post-ingestive feedback mechanisms necessary for robust learning. To test this hypothesis, we measured hemolymph glucose and trehalose levels at five time points during the ten minutes after bees consumed a sucrose solution. Pristine®-exposed bees had elevated baseline glucose concentrations in the hemolymph relative to control bees. Hemolymph glucose levels rose significantly within five minutes of feeding in control bees, but not in Pristine®-fed bees. These data suggest that the post-ingestive feedback mechanisms necessary for robust learning are disrupted in bees that have consumed this fungicide, providing a plausible mechanistic explanation for its effects on learning performance in the PER assay. Pristine®-exposed bees may have elevated hemolymph glucose levels because the fungicide elicits an inflammatory response. These results provide additional mechanistic understanding of the negative physiological effects of mitotoxic fungicides on this important pollinator.

7.
J Exp Biol ; 226(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37204298

RESUMO

Air sacs are a well-known aspect of insect tracheal systems, but have received little research attention. In this Commentary, we suggest that the study of the distribution and function of air sacs in tracheate arthropods can provide insights of broad significance. We provide preliminary phylogenetic evidence that the developmental pathways for creation of air sacs are broadly conserved throughout the arthropods, and that possession of air sacs is strongly associated with a few traits, including the capacity for powerful flight, large body or appendage size and buoyancy control. We also discuss how tracheal compression can serve as an additional mechanism for achieving advection in tracheal systems. Together, these patterns suggest that the possession of air sacs has both benefits and costs that remain poorly understood. New technologies for visualization and functional analysis of tracheal systems provide exciting approaches for investigations that will be of broad significance for understanding invertebrate evolution.


Assuntos
Sacos Aéreos , Artrópodes , Animais , Filogenia , Insetos , Traqueia
8.
J Exp Biol ; 226(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655788

RESUMO

Migration allows animals to track favorable environments and avoid harmful conditions. However, migration is energetically costly, so migrating animals must prepare themselves by increasing their energy stores. Despite the importance of locust migratory swarms, we still understand little about the physiology of locust migration. During long-distance flight, locusts rely on lipid oxidation, despite the fact that lipids are relatively rare in their leaf-based diets. Therefore, locusts and other insect herbivores synthesize and store lipid from ingested carbohydrates, which are also important for initial flight. These data suggest that diets high in carbohydrate should increase lipid stores and the capacity for migratory flight in locusts. As predicted, locust lipid stores and flight performance increased with an increase in the relative carbohydrate content in their food. However, locust flight termination was not associated with complete lipid depletion. We propose potential testable mechanisms that might explain how macronutrient consumption can affect flight endurance.


Assuntos
Gafanhotos , Animais , Gafanhotos/fisiologia , Dieta , Carboidratos , Lipídeos , Voo Animal/fisiologia
9.
Integr Comp Biol ; 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066644

RESUMO

Understanding the effect of body size on flight costs is critical for development of models of aerodynamics and animal energetics. Prior scaling studies that have shown that flight costs scale hypometrically have focused primarily on larger (> 100 mg) insects and birds, but most flying species are smaller. We studied the flight physiology of thirteen stingless bee species over a large range of body sizes (1-115 mg). Metabolic rate during hovering scaled hypermetrically (scaling slope = 2.11). Larger bees had warm thoraxes while small bees were nearly ecothermic; however, even controlling for body temperature variation, flight metabolic rate scaled hypermetrically across this clade. Despite having a lower mass-specific metabolic rate during flight, smaller bees could carry the same proportional load. Wingbeat frequency did not vary with body size, in contrast to most studies that find wingbeat frequency increases as body size decreases. Smaller stingless bees have greater relative forewing surface area which may help them reduce the energy requirements needed to fly. Further, we hypothesize that the relatively larger heads of smaller species may change their body pitch in flight. Synthesizing across all flying insects, we demonstrate that the scaling of flight metabolic rate changes from hypermetric to hypometric at approximately 58 mg body mass with hypermetic scaling below (slope = 1.2) and hypometric scaling (slope = 0.67) above 58 mg in body mass. The reduced cost of flight likely provides selective advantages for the evolution of small body size in insects. The biphasic scaling of flight metabolic rates and wingbeat frequencies in insects supports the hypothesis that the scaling of metabolic rate is closely related to the power requirements of locomotion and cycle frequencies.

10.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093639

RESUMO

Flying endothermic insects thermoregulate, likely to improve flight performance. Males of the Sonoran Desert bee, Centris caesalpiniae, seek females at aggregations beginning at sunrise and cease flight near midday when the air temperature peaks. To identify the thermoregulatory mechanisms for C. caesalpiniae males, we measured tagma temperature, wingbeat frequency, water loss rate, metabolic rate and tagma mass of flying bees across shaded air temperatures of 19-38°C. Surface area, wet mass and dry mass declined with air temperature, suggesting that individual bees do not persist for the entire morning. The largest bees may be associated with cool, early mornings because they are best able to warm themselves and/or because they run the risk of overheating in the hot afternoons. Thorax temperature was high (38-45°C) and moderately well regulated, while head and abdomen temperatures were cooler and less controlled. The abdominal temperature excess ratio increased as air temperature rose, indicating active heat transfer from the pubescent thorax to the relatively bare abdomen with warming. Mass-specific metabolic rate increased with time, and air and thorax temperatures, but wingbeat frequency did not vary. Mass-specific water loss rate increased with air temperature, but this was a minor mechanism of thermoregulation. Using a heat budget model, we showed that whole-body convective conductance more than doubled through the morning, providing strong evidence that the primary mechanism of regulating thorax temperature during flight for these bees is increased use of the abdomen as a convector at higher air temperatures.


Assuntos
Regulação da Temperatura Corporal , Voo Animal , Abdome , Animais , Abelhas , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Voo Animal/fisiologia , Masculino , Água
11.
Elife ; 112022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098509

RESUMO

The scaling of respiratory structures has been hypothesized to be a major driving factor in the evolution of many aspects of animal physiology. Here, we provide the first assessment of the scaling of the spiracles in insects using 10 scarab beetle species differing 180× in mass, including some of the most massive extant insect species. Using X-ray microtomography, we measured the cross-sectional area and depth of all eight spiracles, enabling the calculation of their diffusive and advective capacities. Each of these metrics scaled with geometric isometry. Because diffusive capacities scale with lower slopes than metabolic rates, the largest beetles measured require 10-fold higher PO2 gradients across the spiracles to sustain metabolism by diffusion compared to the smallest species. Large beetles can exchange sufficient oxygen for resting metabolism by diffusion across the spiracles, but not during flight. In contrast, spiracular advective capacities scale similarly or more steeply than metabolic rates, so spiracular advective capacities should match or exceed respiratory demands in the largest beetles. These data illustrate a general principle of gas exchange: scaling of respiratory transport structures with geometric isometry diminishes the potential for diffusive gas exchange but enhances advective capacities; combining such structural scaling with muscle-driven ventilation allows larger animals to achieve high metabolic rates when active.


Assuntos
Besouros , Transporte Respiratório , Animais , Insetos/metabolismo , Oxigênio/metabolismo , Respiração
12.
Proc Biol Sci ; 289(1981): 20220298, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975442

RESUMO

Performance benefits of stable, warm muscles are believed to be important for the evolution of endothermy in mammals, birds and flying insects. However, thermal performance curves have never been measured for a free-flying endotherm, as it is challenging to vary body temperatures of these animals, and maximal flight performance is difficult to elicit. We varied air temperatures and gas densities to manipulate thoracic temperatures of flying honeybees from 29°C to 44°C, with low air densities used to increase flight metabolic rates to maximal values. Honeybees showed a clear thermal performance curve with an optimal temperature of 39°C. Maximal flight metabolic rates increased by approximately 2% per 1°C increase in thoracic temperature at suboptimal thoracic temperatures, but decreased approximately 5% per 1°C increase as the bees continued to heat up. This study provides the first quantification of the maximal metabolic performance benefit of thermoregulation in an endotherm. These data directly support aerobic capacity models for benefits of thermoregulation in honeybees, and suggest that improved aerobic capacity probably contributes to the multiple origins of endothermic heterothermy in bees and other insects.


Assuntos
Regulação da Temperatura Corporal , Voo Animal , Animais , Abelhas , Temperatura Corporal/fisiologia , Voo Animal/fisiologia , Insetos , Mamíferos , Temperatura
13.
Integr Comp Biol ; 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933126

RESUMO

Larger animals studied during ontogeny, across populations, or across species, usually have lower mass-specific metabolic rates than smaller animals (hypometric scaling). This pattern is usually observed regardless of physiological state (e.g. basal, resting, field, maximally-active). The scaling of metabolism is usually highly correlated with the scaling of many life history traits, behaviors, physiological variables, and cellular/molecular properties, making determination of the causation of this pattern challenging. For across-species comparisons of resting and locomoting animals (but less so for across populations or during ontogeny), the mechanisms at the physiological and cellular level are becoming clear. Lower mass-specific metabolic rates of larger species at rest are due to a) lower contents of expensive tissues (brains, liver, kidneys), and b) slower ion leak across membranes at least partially due to membrane composition, with lower ion pump ATPase activities. Lower mass-specific costs of larger species during locomotion are due to lower costs for lower-frequency muscle activity, with slower myosin and Ca++ ATPase activities, and likely more elastic energy storage. The evolutionary explanation(s) for hypometric scaling remain(s) highly controversial. One subset of evolutionary hypotheses relies on constraints on larger animals due to changes in geometry with size; for example, lower surface-to-volume ratios of exchange surfaces may constrain nutrient or heat exchange, or lower cross-sectional areas of muscles and tendons relative to body mass ratios would make larger animals more fragile without compensation. Another subset of hypotheses suggests that hypometric scaling arises from biotic interactions and correlated selection, with larger animals experiencing less selection for mass-specific growth or neurolocomotor performance. A additional third type of explanation comes from population genetics. Larger animals with their lower effective population sizes and subsequent less effective selection relative to drift may have more deleterious mutations, reducing maximal performance and metabolic rates. Resolving the evolutionary explanation for the hypometric scaling of metabolism and associated variables is a major challenge for organismal and evolutionary biology. To aid progress, we identify some variation in terminology use that has impeded cross-field conversations on scaling. We also suggest that promising directions for the field to move forward include: 1) studies examining the linkages between ontogenetic, population-level, and cross-species allometries, 2) studies linking scaling to ecological or phylogenetic context, 3) studies that consider multiple, possibly interacting hypotheses, and 4) obtaining better field data for metabolic rates and the life history correlates of metabolic rate such as lifespan, growth rate and reproduction.

14.
Environ Pollut ; 311: 120010, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002100

RESUMO

Honey bee pollination services are of tremendous agricultural and economic importance. Despite this, honey bees and other pollinators face ongoing perils, including population declines due to a variety of environmental stressors. Fungicides may be particularly insidious stressors for pollinators due to their environmental ubiquity and widespread approval for application during crop bloom. The mechanisms by which fungicides affect honey bees are poorly understood and any seasonal variations in their impact are unknown. Here we assess the effects on honey bee colonies of four-week exposure (the approximate duration of the almond pollination season) of a fungicide, Pristine® (25.2% boscalid, 12.8% pyraclostrobin), that has been commonly used for almonds. We exposed colonies to Pristine® in pollen patties placed into the hive, in either summer or fall, and assessed colony brood and worker populations, colony pollen collection and consumption, and worker age of first foraging and longevity. During the summer, Pristine® exposure induced precocious foraging, and reduced worker longevity resulting in smaller colonies. During the fall, Pristine® exposure induced precocious foraging but otherwise had no significant measured effects. During the fall, adult and brood population levels, and pollen consumption and collection, were all much lower, likely due to preparations for winter. Fungicides and other pesticides may often have reduced effects on honey bees during seasons of suppressed colony growth due to bees consuming less pollen and pesticide.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Abelhas , Fungicidas Industriais/análise , Fungicidas Industriais/toxicidade , Pólen/química , Polinização , Estações do Ano
15.
Sci Rep ; 12(1): 4730, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304878

RESUMO

In almost all animals, physiologically low oxygen (hypoxia) during development slows growth and reduces adult body size. The developmental mechanisms that determine growth under hypoxic conditions are, however, poorly understood. Here we show that the growth and body size response to moderate hypoxia (10% O2) in Drosophila melanogaster is systemically regulated via the steroid hormone ecdysone. Hypoxia increases level of circulating ecdysone and inhibition of ecdysone synthesis ameliorates the negative effect of low oxygen on growth. We also show that the effect of ecdysone on growth under hypoxia is through suppression of the insulin/IGF-signaling pathway, via increased expression of the insulin-binding protein Imp-L2. These data indicate that growth suppression in hypoxic Drosophila larvae is accomplished by a systemic endocrine mechanism that overlaps with the mechanism that slows growth at low nutrition. This suggests the existence of growth-regulatory mechanisms that respond to general environmental perturbation rather than individual environmental factors.


Assuntos
Proteínas de Drosophila , Ecdisona , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hipóxia , Insulina/metabolismo , Larva/fisiologia , Oxigênio/metabolismo , Esteroides/metabolismo
17.
Ecotoxicol Environ Saf ; 226: 112841, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607189

RESUMO

Recent observations of many sublethal effects of pesticides on pollinators have raised questions about whether standard short-term laboratory tests of pesticide effects on survival are sufficient for pollinator protection. The fungicide Pristine® and its active ingredients (25.2% boscalid, 12.8% pyraclostrobin) have been reported to have low acute toxicity to caged honey bee workers, but many sublethal effects at field-relevant doses have been reported and Pristine® was recently found to increase worker pollen consumption, reduce worker longevity and colony populations at field relevant concentrations (Fisher et al. 2021). To directly compare these whole-colony field results to more standard laboratory toxicology tests, the effects of Pristine®, at a range of field-relevant concentrations, were assessed on the survival and pollen consumption of honey bee workers 0-14 days of age. Also, to separate the effects of the inert and two active ingredients, bees were fed pollen containing boscalid, pyraclostrobin, or pyraclostrobin plus boscalid, at concentrations matching those in the Pristine® treatments. Pyraclostrobin significantly reduced pollen consumption across the duration of the experiment, and dose-dependently reduced pollen consumption on days 12-14. Pristine® and boscalid significantly reduced pollen feeding rate on days 12-14. Boscalid reduced survival in a dose-dependent manner. Consumption of Pristine® or pyraclostrobin plus boscalid did not affect survival, providing evidence against strong negative effects of the inert ingredients in Pristine® and against negative synergistic effects of boscalid and pyraclostrobin. The stronger toxic effects of Pristine® observed in field colonies compared to this laboratory test, and the opposite responses of pollen consumption in the laboratory and field to Pristine®, show that standard laboratory toxicology tests can fail to predict responses of pollinators to pesticides and to provide protection.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Abelhas , Fungicidas Industriais/toxicidade , Laboratórios , Longevidade , Pólen
18.
Environ Pollut ; 288: 117720, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252716

RESUMO

Although fungicides were previously considered to be safe for important agricultural pollinators such as honey bees, recent evidence has shown that they can cause a number of behavioral and physiological sublethal effects. Here, we focus on the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin), which is sprayed during the blooming period on a variety of crops and is known to affect honey bee mitochondria at field-relevant levels. To date, no study has tested the effects of a field-relevant concentration of a fungicide on associative learning ability in honey bees. We tested whether chronic, colony-level exposure at field-relevant and higher concentrations of Pristine® impairs performance on the proboscis extension reflex (PER) paradigm, an associative learning task. Learning performance was reduced at higher field-relevant concentrations of Pristine®. The reductions in learning performance could not be explained by effects on hunger or motivation, as sucrose responsiveness was not affected by Pristine® exposure. To determine whether Pristine®'s negative effects on learning performance were mediated at a specific life stage, we conducted a cross-fostering experiment that exposed bees to the fungicide either only as larvae, only as adults, or during both stages. We found that exposure across the entire life was necessary to significantly reduce learning performance, although non-significant reductions occurred when bees were exposed during just one stage. Our study provides strong evidence that Pristine® has significant sublethal effects on learning performance. As associative learning is a necessary ability for foraging, our results raise concerns that Pristine® could impair foraging abilities and substantially weaken colony health.


Assuntos
Fungicidas Industriais , Animais , Abelhas , Fungicidas Industriais/toxicidade , Larva
19.
Sci Rep ; 11(1): 8332, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859275

RESUMO

The fitness consequences of cooperation can vary across an organism's lifespan. For non-kin groups, especially, social advantages must balance intrinsic costs of cooperating with non-relatives. In this study, we asked how challenging life history stages can promote stable, long-term alliances among unrelated ant queens. We reared single- and multi-queen colonies of the primary polygynous harvester ant, Pogonomyrmex californicus, from founding through the first ten months of colony growth, when groups face high mortality risks. We found that colonies founded by multiple, unrelated queens experienced significant survival and growth advantages that outlasted the colony founding period. Multi-queen colonies experienced lower mortality than single-queen colonies, and queens in groups experienced lower mortality than solitary queens. Further, multi-queen colonies produced workers at a faster rate than did single-queen colonies, even while experiencing lower per-queen worker production costs. Additionally, we characterized ontogenetic changes in the organization of labor, and observed increasing and decreasing task performance diversity by workers and queens, respectively, as colonies grew. This dynamic task allocation likely reflects a response to the changing role of queens as they are increasingly able to delegate risky and costly tasks to an expanding workforce. Faster worker production in multi-queen colonies may beneficially accelerate this behavioral transition from a vulnerable parent-offspring group to a stable, growing colony. These combined benefits of cooperation may facilitate the retention of multiple unrelated queens in mature colonies despite direct fitness costs, providing insight into the evolutionary drivers of stable associations between unrelated individuals.

20.
Ecotoxicol Environ Saf ; 217: 112251, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33905983

RESUMO

Pollinators and other insects are experiencing an ongoing worldwide decline. While various environmental stressors have been implicated, including pesticide exposure, the causes of these declines are complex and highly debated. Fungicides may constitute a particularly prevalent threat to pollinator health due to their application on many crops during bloom, and because pollinators such as bees may consume fungicide-tainted pollen or nectar. In a previous study, consumption of pollen containing the fungicide Pristine® at field-relevant concentrations by honey bee colonies increased pollen foraging, caused earlier foraging, lowered worker survival, and reduced colony population size. Because most pollen is consumed by young adults, we hypothesized that Pristine® (25.2% boscalid, 12.8% pyraclostrobin) in pollen exerts its negative effects on honey bee colonies primarily on the adult stage. To rigorously test this hypothesis, we used a cross-fostering experimental design, with bees reared in colonies provided Pristine® incorporated into pollen patties at a supra-field concentration (230 mg/kg), only in the larvae, only in the adult, or both stages. In contrast to our predictions, exposure to Pristine® in either the larval or adult stage reduced survival relative to control bees not exposed to Pristine®, and exposure to the fungicide at both larval and adult stages further reduced survival. Adult exposure caused precocious foraging, while larval exposure increased the tendency to forage for pollen. These results demonstrate that pollen containing Pristine® can induce significant negative effects on both larvae and adults in a hive, though the magnitude of such effects may be smaller at field-realistic doses. To further test the potential negative effects of direct consumption of Pristine® on larvae, we reared them in vitro on food containing Pristine® at a range of concentrations. Consumption of Pristine® reduced survival rates of larvae at all concentrations tested. Larval and adult weights were only reduced at a supra-field concentration. We conclude that consumption of pollen containing Pristine® by field honey bee colonies likely exerts impacts on colony population size and foraging behavior by affecting both larvae and adults.


Assuntos
Abelhas/fisiologia , Compostos de Bifenilo/toxicidade , Fungicidas Industriais/toxicidade , Niacinamida/análogos & derivados , Estrobilurinas/toxicidade , Animais , Fungicidas Industriais/farmacologia , Insetos , Larva/efeitos dos fármacos , Niacinamida/toxicidade , Praguicidas/toxicidade , Néctar de Plantas , Pólen/efeitos dos fármacos , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...